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Abstract

This computational project investigates the stability of an exoplanet’s orbit within
the habitable zone of a binary star system, and concludes that binary star systems
can support habitable exoplanets. However, there is not enough evidence to support
substantially redirecting the search away from solitary stars. The results suggested
that S-type orbits were more stable when the planet was in orbit around the star of
smaller mass. Stable S- and P-type orbits were successfully simulated, but only S-type
orbits were found to maintain stability within the habitable zone. T-type orbits were
not considered because no examples of stable orbits have been discovered to date.
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1 Introduction

It is known from Newton’s third law that the total
momentum of a system in isolation is always con-
served, and therefore there must exist a point of con-
centration that represents the mass of the whole sys-
tem. This point of balance is known as the centre of
mass or barycenter, and must be positioned on the
line that connects the centres of two or more bodies.
Throughout this report, it will be assumed that the
both planets and stars are spherically symmetrical,
and act gravitationally as point masses. ! In addi-
tion, all orbits have been confined to a common plane
on the x- and y-axes, with no component of motion
in the z-direction.

Note that throughout this report, Earth mass and So-
lar mass will be represented by Mg and My respec-
tively.

1.1 Restricted Three Body Problem

The restricted three-body problem is the simplest
variation of all three-body problems due to one of
the bodies having an infinitesimal mass. Since such a
negligible body leads to essentially zero perturbation
of the other two massive bodies, the two massive bod-
ies will appear and react exactly as they would in a
two body problem. 2

Rigil Kentaurus, otherwise known as Alpha Centauri,
is technically a tertiary star system, but acts more
like a binary system consisting of two similarly mas-
sive and relatively-close stars, Alpha Centauri A and
Alpha Centauri B. The third star, Proxima Centauri,
is much further away from the other two stars, and
its far lower mass means that it has little effect on the
binary part of the system. In fact, Alpha Centauri A
and B are only separated by 23 AU, whereas Prox-
ima Centauri is roughly 12000 AU away.® P11 As a
result, this report will focus specifically on treating
Alpha Centauri as a restricted three-body system; if
the mass of Proxima Centauri is taken to be negli-
gible, then Alpha Century is the closest binary star
structure to the Solar System. H

1.2 Habitable Zone

Within this report we define a habitable planet as
one that already harbours simple/complex life, or one
that has a suitable environment with the potential to
sustain future development of life.

There has been some variance in definitions over
the past 60 years, but the circumstellar habitable
zone, known simply as the habitable zone, has gener-

ally been defined as the circumstellar region of space
around a star in which a terrestrial planet (0.1 < M <
10M @) has an orbit stable enough to allow for the ex-
istence and maintenance of liquid water on its surface,
given sufficient atmospheric pressure; such planets are
known as ‘aqua planets’. 5 p-4] [6 p-443] [7} p.2]

Aqua planets that steer too far away from a star
tend to experience a freezing effect, while others such
as Venus come too close, experiencing a boiling ef-
fect that leads to the filling up of the atmosphere
with water vapour, which in turn amplifies the green-
house effect and results in further evaporation of the
oceans. & P-443] Therefore, the search for planets with
the potential to sustain complex life is narrowed down
to habitable zones throughout the universe.

Although the habitable zone is relatively small, it
could potentially be scaled in size by roughly a fac-
tor of three (see ﬁgure to encompass ‘land planets’,
should they be considered habitable. These are typ-
ically ‘dry’ planets with no oceans and vast deserts,
for which their habitability depends on the presence
of locally abundant water. 6 p-443]

Mars orbit

Venus orbit

Figure 1: A section of the Solar System depicting the
region in which liquid water can be maintained within
an atmospheric pressure of 1 bar. The dark blue rep-
resents the habitable zone for ‘aqua planets’, and the
light blue represents the habitable zone for ‘land plan-
ets’, which is approximately three times the radius.
The yellow represents the Sun, and the white circu-
lar lines correspond to the orbits of Mercury, Venus,
Earth and Mars. 6 p-459]

1.3 Exoplanets

The term exoplanet, sometimes interchanged with the
term extrasolar planet, refers to a planet that orbits
any given star other than the Sun, and is therefore
located outside of our Solar System.® There are a
total of 4151 exoplanets that have been discovered and
confirmed as of 16th April 2020, whereby the majority
of exoplanet recordings have either a radius 2R® <



R < 6R® or a mass M > 300M . These statistics
are subject to an exoplanet being a free-floating mass
that is no greater than 30 Jupiter masses. 1%

The existence of exoplanets orbiting binary star sys-
tems has been proven by observation, but records sug-
gest that exoplanets are far more likely to be orbiting
a singular star, with only 144 and 36 within binary
and higher multiple-star systems respectively. 12 1]

Discovered in 2016 within Rigil Kentaurus, the near-
est exoplanet, Prozima Centauri b, was identified as
the only planet orbiting the closest star to the Solar
System, Proxima Centauri. With a mass of 1.3Mg
and a period of 11.2 days, it is believed to be a rocky-
based planet that is located within the habitable zone
of Proxima Centauri, which is only around 4.2 light-
years away from the Sun; very close when considering
the scale of the universe. ! Despite orbiting a singu-
lar star, Proxima Centauri b is of particular inter-
est, given the fact that it is not only a rocky-based,
roughly Earth-massed exoplanet within a habitable
zone, but is also the closest exoplanet to the Solar
System on record.

Most exoplanets have been found to orbit main-
sequence stars similar to that of the Sun, but the ma-
jority of these discoveries have been observed to exist
under significantly different conditions. Exoplanets
are usually far more massive than the Earth, but this
evidence is partially distorted by the fact that the
most commonly chosen methods of detection, such as
Doppler technique and transit, favour the discovery
of large planets in close orbit to a star. The composi-
tion of exoplanets also differs to that of the rocky ter-
restrial planets since they are usually gaseous, which
aligns with their larger mass when we observe that
giant planets within the Solar System are all gaseous.
Other regular properties of exoplanets include largely
elliptical orbits, which would suggest that the Solar
System is not particularly common in that planetary
orbits within it are near circular.® However, for the
simplification of this computational project, and the
purpose of identifying habitable planets, we shall as-
sume that all orbits are perfectly circular through-
out. It is expected that the distance of a habitable
planet from its star(s) would experience little fluctu-
ation, thus avoiding extreme temperature changes.

1.4 Binary Stars

There is some uncertainty within the scientific com-
munity when it comes to the estimation of the per-
centage of star systems that are binary, but the most
common assertion is that over 50% of all main se-
quence stars exist as binary or multiple star sys-

tems. 12 P-11 However, these assertions may be subject
to significant sample bias in that binary star systems
are often much more massive and bright than solitary
stars, and are therefore more easily detected. Analysis
with greater precision suggests that the more common
fainter stars are likely to be singular, and could poten-
tially compose up to two thirds of all stellar systems
within the universe, 13 p-L63]

Approximately 50-60% of binary systems allow for
both the formation and long-term stability of Earth-
like planets, with the majority, 40-50%, being wide
enough to support S-type orbits, and 10% being nar-
row enough to support P-type orbits (S- and P-type
orbits explained in the following section). Given that
the Milky Way contains in excess of 100 billion star
systems, an abundance of Earth-like planets is ex-
pected to exist within our own galaxy. 14 p-282]

The size of a star plays an important role when it
comes to the search for complex life. In particular,
The Sun is relatively large, but not so massive that it
has too short a life-span. Many super-massive stars
would not live long enough to allow the evolution to-
wards complex life, even if the planet were perfectly
habitable. 15!

1.5 Types of Stable Orbits

From a dynamical point of view, there are three types
of stable orbits within binary star systems, which are
commonly referred to as either S-type, P-type or T-
type (see figure . The Satellite-type (S-type) in-
volves a planet in stable orbit around only one of the
two stars, whereas the Planet-type (P-type) involves a
planet being in a distant, yet stable orbit around both
stars. K8 P4 The third type of stable orbit occurs only
in binary systems where the masses of each star are
significantly different. This T-type orbit involves a
(Trojan) planet sharing an orbit with the smaller star
whilst being gravitationally locked into a fixed posi-
tion. These positions are known as Lagrangian points
L4 and L5, which occur 60° in front of the smaller
star, and 60° behind. However, since no planet has
yet been observed to maintain such an orbit, this re-
port will focus solely on the possible habitability of
exoplanets with Satellite- and Planet-type orbits. £7!



Figure 2: Two binary star systems portraying three
different types of stable orbits (all anti-clockwise).
Left: displays a P-type orbit around both stars, and
an S-type orbit around the red star 1. The black dot
represents the system’s centre of mass.

Right: displays a T-type orbit along with the La-
grangian points L4 and L5. 12 p-2]

In order to evaluate the habitability of an exoplanet,
it must first be considered that a planet is only stable
if it is capable of constantly sustaining orbital param-
eters such as inclination, semimajor axis and eccen-
tricity. More precisely, a planet is stable if the slight
variations in orbital parameters fluctuate in a sinu-
soidal fashion as opposed to growing exponentially.
A planet will incur some instability if perturbations
cause the orbital parameters to change significantly
with the risk that it either overcomes the system’s
gravitational field, or undergoes a collision. 16 P-4]

It is already known that the rigid limits of orbital
range for higher multiple star systems (three or more)
mean that it would be unlikely to find stable orbits
of Earth-like exoplanets within the habitable zone,
and so this report will not pursue any further the
evaluation of higher multiple star systems. 15

1.6 Aim of Project

This project aims to model the celestial mechanics
of binary star systems, and to investigate the feasi-
bility of planets orbiting within the habitable zone.
Furthermore, the aim is to address the two most fun-
damental questions when considering the feasibility
of habitable planets existing within binary star sys-
tems; can an exoplanet maintain a stable orbit within
a binary star system, and if so, could such an orbit
remain stable within the habitable zone?

In answering these questions this report aims to con-
clude upon whether it is more effective to focus at-
tention on both singular and binary star systems, or
exclusively the former, in search of life outside the
Solar System.

2 Theory

2.1 From Kepler to Newton

Johannes Kepler was the first to empirically deter-
mine the three laws of planetary motion, but it was
Isaac Newton who later attempted and succeeded in
defining the underlying physical processes that gov-
ern motion. Newton (among others) identified that,
for a body in uniform circular motion, its acceleration
must point towards the centre of the circle, and fur-
ther deduced that the gravitational forces of two mas-
sive bodies were inversely proportional to the square
of their separation. ™ Newton made this known as
the law of universal gravitation, which states that the
force acting on body 2 from body 1,

Gmimag
Fp = —5—T7, (1)
T12

where G is Newton’s gravitational constant, m; and
mso are the masses of body 1 and 2 respectively, r1o
is the magnitude of the separation between the two
bodies, and 7 represents a unit vector.

This gravitational force that acts on a planet orbiting
a star is equal to the centripetal force,

Fczi (2)

where m is the mass of the planet, R is its orbital
radius, and v is its velocity, which is at right-angles
to the orbital trajectory. ™

2.2 Gravitational Constant

By taking a two-body system consisting of identical
masses M that are equal and opposite in distance
from the origin (see figure , the gravitational and
centripetal forces, defined via equations and
respectively, can be equated such that

Mv?  GM?
R = 3 T (3)

and rearranged for the gravitational constant

v2r3 v?(2R)* 4R

G:M(R~r):2M(R~R)_ o @

where R is radius of orbit, and v is velocity. Note
that the separation was taken to be r = 2R, as seen
within figure



\\\vz = (0, +11, 0)

x1=(-1,0,o)' R,=(-1,0,0) R,=(+1,0,0)

m, > X

7%, = (+1,0,0)

Figure 3: A simple binary system consisting of two
bodies that are equidistant from the origin, and mov-
ing solely in the xy-plane, with equal and opposite
initial velocities of pi. R; and Ry are the radii of or-
bit, m; and ms are the masses of each body, r is the
seperation of the two bodies, x; and x5 are 3d position
vectors, vi and vy are 3d velocity vectors.

By taking distance to be the circumference of a
circular orbit 2w R, and time to be the period of
time elapsed over one complete orbit 27, the speed-
distance-time formula,

U= ?7 (5)

can be substituted into equation[d]to express the grav-
itational constant in terms of orbital radius R, bodily
mass M and time period T,

47’ R3

G=—. (6)

After expressing the bodily mass, orbital radius and
time period as solar masses, astronomical units and
years respectively, such that M, R and T are numer-
ically equal to 1, the universal gravitational constant

G = 4r* AU? MJ" year 2. (7)

2.3 Velocity

The gravitational and centripetal forces, defined via
equations and respectively, can be equated
such that

2
myvy Gmimsg

frng . 8

R, 2D )

where r = |Ry — Ry| is clear in figure

Upon rearrangement for velocity, it is found that

N \/Gm2|R1|
v = ———— (9)

r

and by similar logic

Vo = 7Gm1|R2| (10)

, .

3 Project Resources

Hardware: Lenovo ThinkPad X1 laptop (Intel i7 core,
16GB RAM) connected to a Dell 24inch monitor and
computer mouse.

Software: Spyder (Python 3.7) for computational sim-
ulations, and Atom (LaTeX) for producing this re-
port.

Research: Articles (via Google Scholar), online books,
printed books and Google’s Search Engine.

4 Method and Code Validation

4.1 Initial Method

The first consideration made before even starting to
write the code was about the time it would take to
run each simulation. In an effort to optimise conver-
gence and computation time, all units were taken to
be astronomical, such that mass was measured in so-
lar masses, position in astronomical units (distance
between The Sun and Earth), and time in years.

Python’s SciPy library was chosen as an all encom-
passing import for mathematical operations since it
offered most of the required NumPy functions for this
project and more.

In order to increase the efficiency of validating the
code, the most simple of cases was targeted first;
a two-body system of equal masses and positions
equidistant from the origin, portrayed by figure
The velocities were determined by inserting m; =
mo = |Ri| = |Re| = 1, G = 47% and r = 2 into equa-
tions @D and , such that vy = —7 and vy = +7.
For simplicity, there is only initial velocity in the y-
direction.

After the time period was then determined as T = 2
via equation , all constants and initial vectors were
inserted into the program. An array that joined the
position and velocity arrays together was then cre-
ated and later flattened to a single dimension af-
ter realising that the Ordinary Differential Equation
(ODE) solver wouldn’t process the initial parameters



in multi-dimensional form.

Next, a function was created, within which the initial
position and velocity arrays were sliced and assigned
to variables. The magnitude of the separation of the
two stars and their individual accelerations were also
defined within the function, and lastly the velocity
and acceleration arrays were concatenated before re-
turning their value as the output of the function.

In order to manually set and vary the duration of the
orbit simulation, as well as the number of interval
points, a linearly spaced vector for time was gener-
ated. The actual ‘meat and bones’ of the simulator,
the ODE solver, relied upon Python’s very useful li-
brary function, sci.integrate.odeint(). The role played
by the odeint() function was to return an array con-
taining position and velocity vectors for each individ-
ual time point, which would then be sliced since only
the first six columns were required.

4.2 Plotting Initial Setup

With calculations successfully made, the MatPlotLib
library was used extensively to create and customise a
specific graphical display of the results, as illustrated
in figure [4
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Figure 4: A two-body system consisting of equal mass
stars that are equidistant from the origin. See table
[2 within the appendix for full details of parameters
used.

Once the expected output was achieved, it quickly
became apparent that a large number of simulations
would be produced, and so it made sense to create a
way of automatically saving the graphical output from
each simulation, along with its corresponding param-

eters, in a specific folder. The end product (code) of
this initial program can be viewed in the ‘Full Code:
Two Body, Same Mass’ section within the appendix.

4.3 Adjusting Perspective of Plot

In the next phase of validating the code, the program
was re-run with different masses (5bM® and M©), but
as can be seen in figure |5 the system appeared to be
‘drifting’ due to some overall momentum.
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Figure 5: A two-body system consisting of unequal
masses that are ‘drifting’ due to an overall momentum
in the system. See table[3|within the appendix for full
details of parameters used.

Without actually changing any parameters, the code
was updated to incorporate a new centre of mass per-
spective giving the ‘illusion’ that the system was not
‘drifting’ (see figure @ The specific code used to
change the perspective can be viewing in the ‘Code
Snippet: Centre of Mass Perspective (Two-Body)’ sec-
tion within the appendix.
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Figure 6: A two-body system consisting of unequal
masses without any visible ‘drift’ from the system;
the perspective has been changed to the view the sys-
tem from the centre of mass. See table [J] within the
appendix for full details of parameters used.

4.4 Testing 3D Plot

The presentation of results was then experimented
with to effectively portray a system containing bodies
that move in z-direction in addition to the x- and y-
directions. The specific code that was used to plot in
three-dimensions can be viewed via the ‘Code Snip-
pet: 3D Plotting (Three-Body)’ section within the ap-
pendix.

It was expected that if a third body of negligible mass
was travelling fast enough away from the centre of the
system, the remaining system would resemble a simple
two-body system, and so figure[7] further validates the
code. This is a good example of a restricted three-
body system, where a negligible mass has been used
instead of a theoretical infinitesimal mass.
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Figure 7: A restricted three-body system consisting
of two equal mass stars, and one planet of negligible
mass. See table |4 within the appendix for full details
of parameters used.

4.5 Final ‘real’ Test: Sun-Earth-Moon

The final stage of code validation involved simulating
a real system, Sun-Earth-Moon, with the following
known values,

renm = 0.00257 AUHY, (11)
Mg ~ 3 x 107¢ M, 20/ 21 p-1] (12)

and
Mpoon = 3.69 x 1075 M, 221 (13)

where rgy is the separation between the Earth and
Moon, Mg is the mass of the Earth, and Moo, is the
mass of the Moon. The result is illustrated in figure

B
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Figure 8: A three-body system consisting of The Sun,
Earth and Moon. See table [5| within the appendix for
full details of parameters used.

The shape was expected since planetary orbits within
the Solar System are close to being circular, but in or-
der to see if the Moon is orbiting the Earth correctly,
a duplicate ‘magnified’ plot was created by comment-
ing out the plotting of the Sun, and reducing the time
period from 1 to 0.083, which represents one month
(1 year / 12 months = 0.083). The result is illustrated
by figure [9] which clearly shows that the Moon com-
pletes one whole orbit around the Earth in one month,
and therefore proves that the code written within the
appendix of this report for a three-body problem is
correct.
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Figure 9: A three-body system consisting of The Sun,
Earth and Moon, where The Sun has been excluded
from the plot to allow for a magnified view of the
Moon completing one full orbit around the Earth. See
table [5] within the appendix for full details of param-
eters used.

It is important to mention however, that this result
assumed the Earth-moon orbit to be in the same plane
as the Earth-Sun orbit, when in fact the plane of the
Moon’s orbit is inclined by an average of 5.145° to
the plane of Earth’s orbit about the Sun.®3 This is
clearly portrayed by figure

Sun
Moon’s Orbital PI -
oon's Lrotta an/e/ (Actual) Moon

Earth’s Orbital Plane "5-1A O
(Assumed) Moon

Earth

’ Radius Error = 1 —c0s(5.145°) = 1—0.996 = 0.004 = 0.4%

Figure 10: A diagram to show the inclination of the
Moon’s orbital plane against the Earth’s orbital plane,
along with the resulting error in radius of the orbit.

Since the resulting radius error is a relatively small
0.4%, it makes sense that figure |§| appeared to present
the correct solution; the assumption was a reasonable
one.



5 Interpretation of Results

5.1 Unstable Orbit

This is another example of a restricted three-body
problem involving two identical massive stars and a
planet with negligible mass. The velocities are all of
equal magnitude, and the program was initiated in an
attempt to observe a typical unstable orbit. It can be
clearly observed in figure that the planet perma-
nently leaves the binary star system; in this example,
just 3 solar orbits are shown, but larger periods were
tested to ensure that the planet did not loop back into
orbit.
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Figure 11: A restricted three-body system consisting
of two equal mass stars, and one planet of negligible
mass. The planet leaves the system permanently. See
table [6] within the appendix for full details of param-
eters used.

5.2 S-Type Orbit Around Larger Star

This report investigates stable planetary orbits within
a known binary star system, Alpha Centauri. Tech-
nically Alpha Centauri is a tertiary star system, but
it shall be treated as a restricted three-body system
since Proxima Centauri is much smaller in mass, and a
lot further away from the other two larger stars. The
third body within this ‘binary’ star system is given
an Earth-like mass to represent a potentially habit-
able planet. In order to successfully simulate such a
system, the following additional known values need
be known,

Mp = 1.100 M, B P11 (14)

Mg = 0.907 M, % p-L11] (15)

10

Tap = 79.910 years 25 p-283] (16)

and

rap =23 AUB P (17)
where M and Mp are the masses of Alpha Centauri
A and B respectively, Tagp is the time period required
for one complete orbit by Alpha Centauri A and B
around their corresponding centre of mass, and rap
is the separation between Alpha Centauri A and B.

To begin with, a plot (figure was created using a
smaller time period; the aim being to present clearly
the orbital pattern of an S-type orbit before going on
to obtain more precise results.
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Figure 12: A three-body system consisting of an

Earth-mass planet within the Alpha Centauri binary
star system. Plotted with a relatively low time pe-
riod for clarity, the planet has an initial velocity of
10.5 AU/year, and is in an S-type orbit around the
larger star, Alpha Centauri A. See table [7] within the
appendix for full details of parameters used.

The result for an Earth-like planet travelling with an
initial velocity of 10.5 AU/year around Alpha Cen-
tauri A was then repeated for a much larger time pe-
riod (figure [13]), which made clear that a stable orbit

occurs under these conditions.
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Figure 13: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet has an initial velocity of 10.5
AU/year, and is in an S-type orbit of radius 0.97(5)
AU around the larger star, Alpha Centauri A. See ta-
ble[7]within the appendix for full details of parameters
used.

Next, the same conditions were simulated with the
planet initially travelling at 11 AU/year, and as can
be seen from figure the orbit is more significantly
more perturbed by the stars, but still remains a stable.
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Figure 14: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet has an initial velocity of 11
AU /year, and is in an S-type orbit of radius 1.33(7)
AU around the larger star, Alpha Centauri A. See ta-
ble[8| within the appendix for full details of parameters
used.

11

A final repeat under the same conditions was sim-
ulated with the planet initially travelling at 11.5
AU /year, and resulted in an orbit that is clearly less
stable (see ﬁgure, but shows little signs of becom-
ing detached from the system. However, if it were
possible to increase the time period by a substantial
amount, the planet may well show signs of instability.
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Figure 15: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet has an initial velocity of 11.5
AU/year, and is in an S-type orbit of radius 2.28(3)
AU around the larger star, Alpha Centauri A. See ta-
ble [0 within the appendix for full details of parameters
used.



5.3 S-Type Orbit Around Smaller Star

The simulation of an Earth-like planet travelling with
an initial velocity of 10.5 AU /year around Alpha Cen-
tauri B, produced the most stable orbit out of all eval-
uated results within this report. Since the radius of
the S-type orbit in figure [16]is clearly the smallest, it
would suggest that the smaller the radius, the more
stable the orbit. However, there will be a point at
which the radius is too short, resulting in a likely col-
lision between the planet and the star.
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Figure 16: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet has an initial velocity of 10.5
AU /year, and is in an S-type orbit of radius 0.700(2)
AU around the smaller star, Alpha Centauri B. See
table[I0] within the appendix for full details of param-
eters used.

Next, the same conditions were simulated with the
planet initially travelling at 11 AU/year. Figure
appears to have become slightly more perturbed, but
far less so than that seen in figure [I4]
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Figure 17: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet has an initial velocity of 11
AU/year, and is in an S-type orbit of radius 0.87(2)
AU around the smaller star, Alpha Centauri B. See
table [[1] within the appendix for full details of param-
eters used.

Having carried out the final repeat under the same
conditions with the planet initially travelling at 11.5
AU /year, it is now clear from the addition of ﬁgure
that the planetary orbits (S-type) around the smaller
mass star, Alpha Centauri B, are significantly more
stable than those around Alpha Centauri A.

It is important to mention that these results were
based on the significant assumption that all orbits are
perfectly circular, which is not even remotely close to
the current Alpha Centauri binary system; in reality
the orbital eccentricity is 0.52. 28 However, since this
report is seeking to determine the potential of stable
orbits within binary star systems in general, it does
not invalidate the story behind the results.



@ Alpha Centauri A
@ Alpha Centauri B
€ e Earth-Mass Planet

10

y-coordinate [AU]
o

-10

-10 -5 0 5 10

x-coordinate [AU]

Figure 18: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet has an initial velocity of 11.5
AU/year, and is in an S-type orbit of radius 1.17(1)
AU around the smaller star, Alpha Centauri B. See
table [[2) within the appendix for full details of param-
eters used.

5.4 Comparing S-Type Orbits

The orbital diameter of planets in S-type orbits were
calculated by first finding the average diameter of the
entire donut-shape produced by the planet’s many or-
bits, and then subtracting the diameter of the star’s
orbit. This makes sense because you are left with the
orbital radius of the planet on either side of the donut-
shape, which combine to make a diameter. However,
the diameter was only calculated as a means of iden-
tifying the orbital radius (see table , and so the
diameter was divided by two. The actual code for
this can be viewed in the ‘Code Snippet: Calculating
Radius of S-type Orbits’ within the appendix.

Looking more deeply into the code, the method in-
volved subtracting minimum values from maximum
values at points in which either the x or y-coordinates
were zero. There were a range of solutions due to the
planets not passing through the exact same points
upon completion of each orbit, and so the method
was an approximation that became sufficiently accu-
rate for large periods of 7" = 1000.

Table [1] provides further evidence that planetary or-
bits (S-type) are more stable around the smaller mass
star, but since this report has focussed on only one
real binary star system, it can not be considered con-
clusive.
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Table 1: A direct comparison between S-orbit radii.
HZ is the Habitable Zone, v is velocity, ‘A Radius’
represents the orbital radius of the Earth-mass planet
around Alpha Centauri A, and ‘B Radius’ represents
that around Alpha Centauri B.

v [AU /year] A Radius [AU] B Radius [AU]
105 0.97(5) 0.700(2)
11 1.33(7) 0.87(2)
115 2.28(3) 1.17(1)
HZ [AUJBT P8l ~ 1-2 ~ 0.7-1.2

The orbital radii about Alpha Centauri B are all
within the predicted range of habitable zone, whereas
only two (one if excluding the uncertainty) of the
orbital radii about Alpha Centauri A lie within the
habitable zone. Also, the uncertainty values for B
radius are significantly lower, which agrees with the
previously observed conclusion that planetary orbits
about Alpha Centauri B are substantially less per-
turbed than those about Alpha Centauri A.

Another key takeaway from table[l|is that, due to the
relatively small variations in initial velocity causing
a planet to leave the habitable zone, the likelihood
of detecting a planet within such a region has to be
very much lower than detecting a planet in some orbit
elsewhere.



5.5 P-Type Orbits

After many simulations, it was discovered that the P-
type orbits, of an Earth-like planet within a binary
star system, appear to only be stable when signifi-
cantly far from the binary stars, such that they act
more like a point mass. As a result, the P-type orbit,
illustrated by figure[19] is far from the habitable zone,
and so this report finds that P-type orbits should be
less of a target than S-type orbits when attempting to
detect potentially habitable exoplanets. This might
not apply if the stars have extremely high luminosity.
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Figure 19: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet is in a P-type orbit around
Alpha Centauri A and B. See table [13| within the ap-
pendix for full details of parameters used.

Figure appears to suggest that the planet’s orbit
is gradually changing with time, indicating possible
future instability. However, upon re-running the sim-
ulation with ten times the period (figure [20)), it was
very interesting to see that the planet’s orbit appeared
very symmetrically stable.
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Figure 20: A three-body system consisting of an
Earth-mass planet within the Alpha Centauri binary
star system. The planet is in a P-type orbit around
Alpha Centauri A and B. A higher time period has
been used here, reaching the limit of the available
hardware. See table [[3] within the appendix for full
details of parameters used.



6 Conclusion

The aim of the project was to ultimately investigate
the stability of an exoplanet’s orbit within the habit-
able zone of a binary star system, and conclude upon
whether binary star systems are a good place for dis-
covering habitable exoplanets.

In an attempt to achieve these aims, a program was
created within Spyder (Python 3.7) to model the ce-
lestial mechanics of binary star systems. The code was
validated step-by-step (see figures |§| and |7]) be-
fore being fully verified upon successfully simulating
the Sun-Earth-Moon three-body problem (see figure
. The result was correct in that it portrayed the
Moon completing one full orbit over a time period of
a month (see figure [9).

After the verification of the code was complete, S-type
orbits were simulated for slightly different planetary
velocities (see figures and . A key
takeaway from table [I] is that, due to the relatively
small variations in initial velocities causing a planet
to leave the habitable zone, the likelihood of detecting
a planet within such a region appears to be much
less common than detecting a planet in some orbit
elsewhere. Furthermore, the results suggested that S-
type orbits were more stable when the planet was in
orbit around the star of smaller mass.

This project successfully simulated more than one sta-
ble S-type orbit within the habitable zone (see table
, and despite successfully simulating a stable P-type
orbit (see figure , no stable P-type orbits within
the habitable zone of Alpha Centauri A or B were
identified.

Previous research has suggested that approximately
50-60% of binary systems allow for both the forma-
tion and long-term stability of Earth like planets, with
the majority, 40-50%, being wide enough to support
S-type orbits, and 10% being narrow enough to sup-
port P-type orbits. This is consistent with the results
obtained, since stable S-type orbits proved much eas-
ier to simulate, by trial and error, than P-type orbits.

However, a large number of assumptions were made
throughout the project, and so there is plenty of scope
for improvement. First, all orbits were assumed to
be perfectly circular despite the chosen binary sys-
tem, Alpha Centauri A and B, being highly ellipti-
cal (orbital eccentricity of 0.52); this system was cho-
sen because of it being the closest star system to the
Solar System. Additionally, Alpha Centauri is tech-
nically a tertiary star system, but was treated as a
restricted three-body problem within this report, and
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since Proxima Centauri is not massless, this treatment
is not entirely perfect. It was however, a reasonable
treatment, given the fact that Proxima Centauri is
12000 AU from either Alpha Centauri A or B, whose
separation is only 23 AU. Another assumption was
that the Earth-Moon orbit lies in the same plane as
the Earth-Sun orbit, but in actual fact there is an in-
clination of 5.145° (see figure [10]), which would have
resulted in a radius error of 0.4%. The final significant
limitation within this project was due to the Python
program being limited to a set number of intervals be-
cause of hardware limits in the computer’s memory,
CPU and RAM, and so extended time periods could
not be evaluated. This limited the ability of deter-
mining the length of time that a stable orbit can be
sustained.

The project could have been significantly improved
by using a computer with much larger memory, more
CPU and greater RAM. Perhaps the most major im-
provement that could be made would be to account
for all, or at least some, of the elliptical orbits, partic-
ularly that of the Alpha Centauri A and B binary sys-
tem. In total, there were not many results obtained,
relatively speaking, and so a great improvement would
be to simply create more simulations, which would in-
crease the reliability of the results.

In conclusion, since 144 out 4151 exoplanets have
been discovered within binary star systems, it may
be worth considering binary star systems in the search
for habitable worlds. Furthermore, since over 50% of
all main sequence stars exist as binary or multiple
star systems (vast majority of which are binary), and
given the fact that galaxies contain approximately 100
billion star systems each, there are clearly lots of ex-
oplanets to be discovered within binary star systems.
However, these assertions may be subject to signifi-
cant sample bias because binary star systems are of-
ten much more massive and bright than solitary stars,
and are therefore more easily detected. Overall then,
this project concludes that binary star systems are
good places to be searching for habitable exoplanets
in addition to singular star systems, but there is not
enough evidence to support substantially redirecting
the search away from solitary stars.
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8 Appendix

8.1 Tables

Table 2: Two-body system with stars of identical mass, orbiting each other (sharing same orbit). See figure [4f for

graphical representation.

Initial Parameters Star 1 Star 2
Mass [Mg] 1 1
Position [AU] (-1,0,0) (1,0, 0)
Velocity [AU/year] | (0, -3.14159, 0) (0, 3.14159, 0)

Start Time: 0 End Time: 5 Points: 10000

Table 3: Two-body system with different mass stars and centre of mass perspective. See ﬁguresand@for graphical

representation.
Initial Parameters Star 1 Star 2
Mass [Mg)] 5 1
Position [AU]J (-1,0,0) (1,0, 0)
Velocity [AU/year] | (0, -3.14159, 0) (0, 7.02000, 0)

Start Time: 0 End Time: 4 Points: 10000
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Table 4: Three-body system consisting of two identical mass stars, and one planet of negligible mass. See figure

for graphical representation.

Initial Parameters Star 1 Star 2 planet
Mass [Mg] 1 1 3.69441e-08
Position [AU] (-1,0,0) (1,0,0) (0, 0,0)
Velocity [AU/year] | (0,-1,0) (0, 1, 0) (0, 0,10)

Start Time: 0

End Time: 100 Points: 100000

Table 5: A three-body system consisting of The Sun, Earth and Moon. See figures |8 and |§| for graphical represen-

tation.

Initial Parameters Sun Earth Moon

Mass [Mg] 1 3.00273e-06 3.69441e-08

Position [AU] (0, 0, 0) (1,0, 0) (1.00257, 0, 0)

Velocity [AU/year] | (0,0, 0) (0, 6.28319, 0) (0, 6.49311, 0)
1. Start Time: 0 End Time: 1 Points: 100

2. Start Time: 0

End Time: 0.08300 Points: 10000

Table 6: A restricted three-body system consisting of two equal mass stars, and one planet of negligible mass. See

figure [11] for graphical representation.

Initial Parameters Star 1 Star 2 planet
Mass [Mg] 1 1 1.00000e-10
Position [AU] (-1,0,0) (1,0,0) (0,0, 0)
Velocity [AU/year] | (0,-1,0) (0, 1, 0) (0, 1, 0)
Start Time: 0 End Time: 3 Points: 10000

Table 7: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
S-orbit around Alpha Centauri A with an initial velocity of 10.5 AU/year. See figures and for graphical

representation.

Initial Parameters

Alpha Centauri A Alpha Centauri B Earth-Mass Planet

Mass [Mg]
Position [AU]
Velocity [AU/year]

1.10000e+00 9.07000e-01 3.00000e-6
(-11.50000, 0, 0)  (11.50000, 0, 0) (-11, 0, 0)
(0, -0.90400, 0) (0, 0.90400, 0) (0, 10.50000, 0)

1. Start Time: 0
2. Start Time: 0

End Time: 100 Points: 10000
End Time: 1000 Points: 100000

Table 8: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
S-orbit around Alpha Centauri A with an initial velocity of 11 AU/year. See figure |14 for graphical representation.

Initial Parameters

Alpha Centauri A Alpha Centauri B Earth-Mass Planet

Mass [Mg]
Position [AU]
Velocity [AU/year]

1.10000e+00 9.07000e-01 3.00000e-6
(-11.50000, 0, 0)  (11.50000, 0, 0) (-11, 0, 0)
(0, -0.90400, 0) (0, 0.90400, 0) (0, 11, 0)

Start Time: 0

End Time: 1000 Points: 100000
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Table 9: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
S-orbit around Alpha Centauri A with an initial velocity of 11.5 AU /year. See ﬁgurefor graphical representation.

Initial Parameters | Alpha Centauri A Alpha Centauri B Earth-Mass Planet
Mass [Mg] 1.10000e+-00 9.07000e-01 3.00000e-6
Position [AU] (-11.50000, 0, 0) (11.50000, 0, 0) (-11, 0, 0)
Velocity [AU/year] (0, -0.90400, 0) (0, 0.90400, 0) (0, 11.50000, 0)

Start Time: 0 End Time: 1000 Points: 100000

Table 10: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
S-orbit around Alpha Centauri B with an initial velocity of 10.5 AU /year. See ﬁgurefor graphical representation.

Initial Parameters | Alpha Centauri A  Alpha Centauri B Earth-Mass Planet
Mass [Mg] 1.10000e+-00 9.07000e-01 3.00000e-6
Position [AU] (-11.50000, 0, 0) (11.50000, 0, 0) (12, 0, 0)
Velocity [AU /year| (0, -0.90400, 0) (0, 0.90400, 0) (0, 10.50000, 0)

Start Time: 0 End Time: 1000 Points: 100000

Table 11: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
S-orbit around Alpha Centauri B with an initial velocity of 11 AU/year. See figure [17|for graphical representation.

Initial Parameters \ Alpha Centauri A Alpha Centauri B Earth-Mass Planet

Mass [Mg] 1.10000e4-00 9.07000e-01 3.00000e-6
Position [AU] (-11.50000, 0, 0)  (11.50000, 0, 0) (12, 0, 0)
Velocity [AU/year] | (0, -0.90400, 0) (0, 0.90400, 0) (0, 11, 0)

Start Time: 0 End Time: 1000 Points: 100000

Table 12: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
S-orbit around Alpha Centauri B with an initial velocity of 11.5 AU /year. See ﬁgurefor graphical representation.

Initial Parameters ‘ Alpha Centauri A Alpha Centauri B Earth-Mass Planet

Mass [Mo] 1.10000e+00 9.07000e-01 3.00000e-6
Position [AU] (-11.50000, 0, 0)  (11.50000, 0, 0) (12, 0, 0)
Velocity [AU/year] | (0, -0.90400, 0) (0, 0.90400, 0) (0, 11.50000, 0)

Start Time: 0 End Time: 1000 Points: 100000

Table 13: A three-body system consisting of an Earth-mass planet within the Alpha Centauri binary star system.
P-orbit around Alpha Centauri A and B. See figures [19] and [20] for graphical representation.

Initial Parameters | Alpha Centauri A Alpha Centauri B Earth-Mass Planet
Mass [Mg] 1.10000e+-00 9.07000e-01 3.00000e-6
Position [AU] (-11.50000, 0, 0) (11.50000, 0, 0) (200, 0, 0)
Velocity [AU/year] (0, -0.90400, 0) (0, 0.90400, 0) (0, 0.50000, 0)

1. Start Time: 0, End Time: 100000, Points: 10000000
2. Start Time: 0, End Time: 1000000, Points: 100000000
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8.2

Full Code: Two Body, Same Mass

VWoONOUTE WN PR

OO0 QUVTUVITUVTUVUVUVITUVUVIUVUARABRDNDDLAEDNDRDLNDADNADNWWWWWWWWWWNNNNNNNNNNRRPRPRPRRERRRER
URWNROUOVONAOAOUVDRWNROUOVOMNAUURNRWNROUVOMINAOAUUDRNRWNROOVOOMNAOAUNAWNROUOONAOAUDN WNR O -

# Import required functions from the SciPy library
from scipy import pi, array, linalg, linspace, integrate, concatenate

# Import required functions from the MatPlotLib library
from matplotlib.pyplot import plot, scatter, figure, xlabel, xticks, ylabel, \

. yticks, legend, grid, show, savefig, locator_params

. #Import the Time library and required functions from the OS library to facilitate
. # saving of plot and parameter files

. from os import path, mkdir

. import time

. #Define universal gravitational constant [AU~3 / solar mass / years”2]
.G = 4xpix*2

. #Define mass of stars [solar mass]

.ml =1

.m2 =1
g
- INITIAL CONDITIONS AND TIME PARAMETERS ~  -------------oo--
g g

. #Define initial position vectors as arrays [AU]
. rl = array([-1,0,0], dtype="float64") #Place star 1 on x-axis at -1 AU
. r2 = array([+1,0,0], dtype="float64") #Place star 2 on x-axis at +1 AU

. #Define initial velocity vectors as arrays [AU / year]
. vl
. V2

array([o,-pi,0], dtype="float64") #Assign star 1 with y-velocity of -pi
array([0,+pi,0], dtype="float64") #Assign star 2 with y-velocity of +pi

. #Create an array of initial parameters and flatten to 1D
. init_params = array([rl, r2, vi, v2]).flatten()

. #Define parameters for independent variable time [years]
. t_start = 0 #Begin simulation at time zero
.t_end =1 #End simulation at time one (half a period in this example)

. #Define number of time points (time intervals plus 1)
. t_points = 10000

. #Define a function that returns velocity and accleration vectors from given
. # position and velocity vectors.

. # Variable A represents an array of size 12 that stores the 3d vector values
. # for the position and velocity each body.

. def TwoBody(A, t, G, ml, m2):

rl = A[:3] #Slice A for index values 0,1,2
r2 = A[3:6] #Slice A for index values 3,4,5
vl = A[6:9] #Slice A for index values 6,7,8
v2 = A[9:12] #Slice A for index values 9,10,11
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66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.

84.
85.
86.
87.
88.
89.
90.
91.
92.

94.
95.
96.
97.
98.
99.

#Calculate 3d vector magnitude of star seperation [AU]
r_mag = linalg.norm(r2 - ri)

#Calculate acceleration vectors [AU / years”2]
al = G*m2*(r2 - rl) / (r_mag)**3 #dvl by dt
a2 = G*m1*(rl - r2) / (r_mag)**3 #dv2 by dt

#Create an array of size 12 that stores the 3d vector values for the
# velocity and acceleration of each body.
r_dependents = concatenate((vl, v2, al, a2))

return r_dependents

#Define duration [AU] of simulation, and number of calculated time points
t_span = linspace(t_start, t_end, t_points)

#Call ODE solver where odeint returns an array of dimensions [t_points, 12],
# of which we only need the 1st 6 "columns", containing x1, yi1, zl, x2, y2, z2.
two_body_sol = integrate.odeint(TwoBody, init_params, t_span, args=(G, ml, m2))

rl_sol = two_body_sol[:,:3]

r2_sol = two_body_sol[:,3:6]

e O e e D S e I S I B P 5 e S S P 5 S ) S S S I B S S S S 1 B S B S B S N o S S S B S e B O e
Hmmm o mm e PLOTTING = =====m==mmmmmmmecemm oo
g

#Create figure
figure(figsize=(17,17))

100.

101.

#Plot star trajectories

102. plot(rl_sol[:,0], rl_sol[:,1], color="r")

103. plot(r2_sol[:,0], r2_sol[:,1], color="b")

104.

105. #Plot final positions of stars and display as red/blue blobs
106. scatter(rl_sol[-1,0], rl_sol[-1,1], color="r", marker="o", s=900, label="star 1")
107. scatter(r2_sol[-1,0], r2_sol[-1,1], color="b", marker="o", s=900, label="star 2")
108.

109. #Print final position coordinates

110. print(ri_sol[-1,0], rl1_sol[-1,1])

111. print(r2_sol[-1,0], r2_sol[-1,1])

112.

113. #Label axes

114. xlabel('\n x-coordinate [AU]', fontsize=40)

115. ylabel('y-coordinate [AU] \n', fontsize=40)

116.

117. #Set number of ticks to five

118. locator_params(axis='x"', nbins=5)

119. locator_params(axis='y', nbins=5)

120.

121. #Increase size of tick labels

122. xticks(fontsize=28)

123. yticks(fontsize=28)

124.

125. #Display grid

126. grid()

127.

128. #Display legend

129. legend(loc="upper right', fontsize=28)

130.



131.
T T ——
133, Hommmmmm o mm e SAVE PARAMETERS =~ === = =mmmmmmmmmomemmeao

135.

136. #Save an image of each plot along with its given input parameters as files in a
137. # sub-directory 'Physics_py' with date and time stamp in the file name for ease
138. # of future reference.

139. #Use Python f-string formatting to write the input parameter values in suitable
140. # formats for LaTeX inclusion.

141. if not path.exists('Physics_py'):

142. mkdir('Physics_py')

143. dt_str=time.strftime ("%Y%m%d-%H%M%S" )

144. savefig(f'Physics_py/{dt_str}_test_pyplot#l.png')

145.

146. with open(f'Physics_py/{dt_str} test pyplot#l.txt','w') as text_file:

147. text_file.write(f'\

148. \

149. Mass & \

150. {m1:{".5e" if ml!=int(ml) else ">2.0f"}} & \

151. {m2:{".5e" if m2!=int(m2) else ">2.0f"}} \\\\ \n\
152. \

153. Radius & (\

154. {r1[@]:{">8.5f" if ri1[@]!=int(ri1[@]) else ">2.0f"}},\
155. {r1[1]:{">8.5f" if r1[1]!=int(rl[1]) else ">2.0f"}},\
156. {r1[2]:{">8.5f" if ri[2]!=int(r1[2]) else ">2.0f"}} )
157.\

158. {r2[0]:{">8.5f" if r2[@]!=int(r2[0]) else ">2.0f"}},\
159. {r2[1]:{">8.5Ff" if r2[1]!=int(r2[1]) else ">2.0f"}},\
160. {r2[2]:{">8.5f" if r2[2]!=int(r2[2]) else ">2.0f"}} )
161. \

162. Velocity & (\

163. {vi[@]:{">8.5f" if vi[@]!=int(v1l[@]) else ">2.0f"}},\
164. {vi[1]:{">8.5f" if vi[1]!=int(v1[1]) else ">2.0f"}},\
165. {vi[2]:{">8.5f" if vi[2]!=int(v1[2]) else ">2.0f"}} )
166. \

167. {v2[@]:{">8.5f" if v2[@]!=int(v2[0]) else ">2.0f"}},\
168. {v2[1]:{">8.5f" if v2[1]!=int(v2[1]) else ">2.0f"}},\
169. {v2[2]:{">8.5f" if v2[2]!=int(v2[2]) else ">2.0f"}} ) \\\\ \n\

170. \

171. Time & \

172. {t_start:{">8.5f" if t_start!=int(t_start) else ">2.0f"}} & \

173. {t_end:{">8.5f" if t_end!=int(t_end) else ">2.0f"}} & \

174. {t_points:{">8.5f" if t_points!=int(t_points) else ">2.0f"}} \\\\ \
175.\

176. ')

177.

178. show()
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8.3 Code Snippet: Centre of Mass Perspective (Two-Body)

R
2. H#----------occccoocooooooooa- PERSPECTIVE = = ======c-ccccccccccc-ccc--oo--
R b L e
4.

5. #Calculate centre of mass (COM) location

6. r_com_sol = (ml*rl_sol + m2*r2_sol) / (ml + m2)

7.

8. #Calculate location of star 1 from COM perspective

9. rl_com_sol = rl_sol - r_com_sol

10.

11. #Calculate location of star 2 from COM perspective

12. r2_com_sol = r2_sol - r_com_sol

13.

14.

N LR R R et dabedeieteiedaiedaiedetadeiateiatebatatototateiatatetainteietainieiaiaiaiiaieieiaiaieiuiaieieiaiaieteiokaiaiainiaiainiaieieinietelaiaietaiabe
15 ff=sc=cc--cc-co-oc-coooo-ooooo PLOTTLS  e==s=sc-cccs-cc-cc-soo-o--oo--ooo
LV LR R Rl dabedeieieiedaiedetetatadaiateiatebatetatabeteiabetatainieietainieiaiaiaieiaikeieiaiekaiaieiaiaieteteiaieiodelotaiedeiobatatetatatebatatebote
18.

19. #Create figure

20. figure(figsize=(17,17))

21.

22. #Plot star trajectories

23. plot(rl_com_sol[:,0], rl_com_sol[:,1], color="r")

24. plot(r2_com_sol[:,0], r2_com_sol[:,1], color="b")

25.

26. #Plot final positions of stars and display as red/blue blobs

27. scatter(rl_com_sol[-1,0], rl_com_sol[-1,1], color="r", marker="o", s=900, label="star 1")
28. scatter(r2_com_sol[-1,0], r2_com_sol[-1,1], color="b", marker="o", s=900, label="star 2")
29.

30. #Print final position coordinates

31. print(rl_com_sol[-1,0], rl_com_sol[-1,1])

32. print(r2_com_sol[-1,0], r2_com_sol[-1,1])
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8.4 Code Snippet: 3D Plotting (Three-Body)

R R e
P e ] IMPORT =------cmcmmmcmccmccccccmceccceaen
E T e e e e LT L
4.

5. # Import required functions from the MatPlotLib library

6. from matplotlib.pyplot import plot, scatter, figure, xlabel, xticks, ylabel, \

7. yticks, legend, grid, show, savefig, locator_params

8.

9. #Import 3D axes

10. from mpl_toolkits import mplot3d

11.

12.

I e e e L L e LT
14, #-------ccmcmmcecccrccnceaaaa PLOTTING =  ==---------cmmcmmmccccmeeccecan
R L ledeledaledaiededelaiadeietetadeiadeiatobatetatebetaiaieiateinieietainiekaiieieiiekaieiaioiaiaieiaiaieieteieieiedeiotafaiebebatobetetebebatataiate
16.

17. #Create figure

18. figure(figsize=(17,17))

19.

20. #iCreate 3D axes

21. ax = axes(projection="'3d")

22.

23. #Plot trajectories for the two stars and the planet

24. ax.plot(rl_com_sol[:,0], rl_com_sol[:,1], rl_com_sol[:,2], color='limegreen")

25. ax.plot(r2_com_sol[:,0], r2_com_sol[:,1], r2_com_sol[:,2], color='b")

26. ax.plot(r3_com_sol[:,0], r3_com_sol[:,1], r3_com_sol[:,2], color='r")

27.

28. #Plot final positions of the two stars and the planet

N
(o]

. ax.scatter(rl_com_sol[-1,0], rl_com_sol[-1,1], rl_com_sol[-
1,2], color='limegreen', marker='o', s=600, label='Star 1')

30. ax.scatter(r2_com_sol[-1,0], r2_com_sol[-1,1], r2_com_sol[-

1,2], color='b', marker='o', s=600, label='Star 2')
31. ax.scatter(r3_com_sol[-1,0], r3_com_sol[-1,1], r3_com_sol[-
1,2], color="r', marker='o', s=200, label='Planet')

32.

33. #Label axes

34. ax.set_xlabel('\n\n\n x-coordinate [AU]', fontsize=32)

35. ax.set_ylabel('\n\n\n y-coordinate [AU]', fontsize=32)

36. ax.set_zlabel('\n\n\n z-coordinate [AU]', fontsize=32)

37.

38. #Increase size of tick labels

39. xticks(fontsize=21)

40. yticks(fontsize=21)

41.

42. #Set number of ticks on axes to five

43. locator_params(axis='x"', nbins=5)

44. locator_params(axis='"y"', nbins=5)

45. locator_params(axis="z"', nbins=5)

46.

47. #Display legend

48. ax.legend(loc="lower right', fontsize=22)

49,

50. #Rotate z-axis tick labels and increase size

51. setp( ax.zaxis.get_majorticklabels(), rotation=30, fontsize=21)
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8.5 Full Code: Three Body, Sun-Earth-Moon

VWoONOUTE WN PR
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. r2
. r3

# Import required functions from the SciPy library
from scipy import pi, array, linalg, linspace, integrate, concatenate

# Import required functions from the MatPlotLib library
from matplotlib.pyplot import plot, scatter, figure, xlabel, xticks, ylabel, \

. yticks, legend, grid, show, savefig, locator_params

. #Import the Time library and required functions from the OS library to facilitate
. # saving of plot and parameter files

. from os import path, mkdir

. import time

. #Define universal gravitational constant [AU”3 / solar mass / years”2]
. G = 4%pi**2

. #Define mass of Sun, Earth and Moon [solar mass]

.m_sun =1

. m_earth = 3.00273e-6

. m_moon = 3.69432e-8
g g
Hommmmmm e INITIAL CONDITIONS AND TIME PARAMETERS =~ =------oommmmmoo-
g

. #Define initial position vectors as arrays [AU]

. rl = array([0 , 9, 0], dtype='float64') #Place Sun 1 at origin
= array([1 , 9, 0], dtype='float64') #Place Earth on x-axis at +1 AU
= array([1.00257, @, @], dtype='float64') #Place Moon on x-axis at +1.00257 AU

. #Starting with the Moon at its furthest point from the Sun, approximate its
. # initial velocity as the radial component around the Sun plus the radial

. # component around the Earth.

. v3_y = 2*%pi*( r3[0] + (r3[0]-1)*12 )

. #Define initial velocity vectors as arrays [AU / year]

. vl = array([@0, © , 0], dtype='float64') #Assign Sun as static
. V2
. v3

array ([0, 2*pi, @], dtype='float64') #Assign Earth with y-velocity of +2*pi
array([@, v3_y, @], dtype='float64') #Assign Moon with y-velocity of +v3_y

. #Create an array of initial parameters and flatten to 1D
. init_params = array([r1, r2, r3, vi, v2, v3]).flatten()

. #Define parameters for independent variable time [years]
. t_start = @ #Begin simulation at time zero
.t_end =1 #End simulation at time one (period of one complete orbit in this example)

. #Define number of time points (time intervals plus 1)
. t_points = 10000

. #Define a function that returns velocity and accleration vectors from given
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66. # position and velocity vectors.

67. # Variable A represents an array of size 18 that stores the 3d vector values
68. # for the position and velocity each body.

69. def ThreeBody(A, t, G, m_sun, m_earth, m_moon):

70. rl = A[:3] #Slice A for index values 0,1,2
71. r2 = A[3:6] #Slice A for index values 3,4,5
72. r3 = A[6:9] #Slice A for index values 6,7,8
73. vl = A[9:12] #Slice A for index values 9,10,11
74. v2 = A[12:15] #Slice A for index values 12,13,14
75. v3 = A[15:18] #Slice A for index values 15,16,17
76.
77. #Calculate 3d vector magnitudes of three body seperations [AU]
78. r12_mag = linalg.norm(r2-ri1)
79. rl3_mag = linalg.norm(r3-ri)
80. r23_mag = linalg.norm(r2-r3)
81.
82. #Calculate acceleration vectors [AU / years”2]
83. al = ( G*m_earth*(r2-r1) / (ri2_mag)**3 ) + ( G*m_moon*(r3-
rl) / (rl3_mag)**3 ) #dvl by dt
84. a2 = ( G*m_sun*(rl-r2) / (ri2_mag)**3 ) + ( G*m_moon*(r3-
r2) / (r23_mag)**3 ) #dv2 by dt
85. a3 = ( G*m_sun*(ril-r3) / (rl3_mag)**3 ) + ( G*m_earth*(r2-
r3) / (r23_mag)**3 ) #dv3 by dt
86.
87. #Create an array of size 18 that stores the 3d vector values for the
88. # velocity and acceleration of each body.
89. r_dependents = concatenate((vl, v2, v3, al, a2, a3))
90.
91. return r_dependents
920
93.
b
95, #----------mmm-mcee - - SOLVER = -~-----cc-cmcmcccmcmcccrccmmomoo -
T
97.

98. #Define duration [AU] of simulation, and number of calculated time points

99. t_span = linspace(t_start, t_end, t_points)

100.

101. #Call ODE solver where odeint returns an array of dimensions [t_points, 18],

102. # of which we only need the 1st 9 "columns", containing x1, y1, z1, x2, y2, z2, x3, y3, z3.

103. three_body_sol = integrate.odeint(ThreeBody, init_params, t_span, args=(G, m_sun, m_earth, m
_moon))

104. rl1_sol = three_body_sol[:, :3]

105. r2_sol = three_body_sol[:,3:6]

106. r3_sol = three_body_sol[:,6:9]

107.

108.

109, H#----- - e e e e e e meemmeeeme - - oo

110, #--------cc-cccmmemceceeeeeas PERSPECTIVE =  =--==--c-cccmcccccccccncananx

111, #------e-ecmccenccncecccnseenceseeneemeeescecesceesessceseeseceeeesee s ee e

112.

113. #Calculate centre of mass (COM) location

114. r_com_sol = (m_sun*rl_sol + m_earth*r2_sol + m_moon*r3_sol) / (m_sun + m_earth + m_moon)

115.

116. #Calculate location of Sun from COM perspective

117. rl_com_sol = rl_sol - r_com_sol

118.

119. #Calculate location of Earth from COM perspective

120. r2_com_sol = r2_sol - r_com_sol

121.

122. #Calculate location of Moon from COM perspective

123. r3_com_sol = r3_sol - r_com_sol

124.

125.



R e L L
127, #-----mmmmmmmmemee e eeeee e en PLOTTING =  =------c-mcmmmcmccccccmceccccen
I e e L L LT
129. #Create figure
130. figure(figsize=(17,17))
131.
132. #Plot trajectories for The Sun, Earth and Moon
133. plot(rl_com_sol[:,0], rl_com_sol[:,1], color='limegreen')
134. plot(r2_com_sol[:,0], r2_com_sol[:,1], color='b")
135. plot(r3_com_sol[:,@], r3_com_sol[:,1], color='r")
136.
137. #Plot final positions of The Sun, Earth and Moon
138. scatter(rl_com_sol[-1,0], rl_com_sol[-
1,1], color='limegreen', marker='o', s=900, label='Sun')
139. scatter(r2_com_sol[-1,0], r2_com_sol[-1,1], color='b', marker='o', s=900, label='Earth')
140. scatter(r3_com_sol[-1,0], r3_com sol[-1,1], color='r', marker='o', s=300, label='Moon')
141.
142. #Label axes
143. xlabel('\n x-coordinate [AU]', fontsize=40)
144. ylabel('y-coordinate [AU]\n', fontsize=40)
145.
146. #Set number of ticks to five
147. locator_params(axis='x"', nbins=5)
148. locator_params(axis='y', nbins=5)
149.
150. #Increase size of tick labels
151. xticks(fontsize=28)
152. yticks(fontsize=28)
153.
154. #Display grid
155. grid()
156.
157. #Display legend
158. legend(loc="upper right', fontsize=28)
159.
160.
161, #-------c-cccccmccmcme e cemce e s e m e ee s e dce s e m e em e s e s cc e mcc e e e — - — - =
162, #-----ccmccmcccccccceaan SAVE PARAMETERS =  =---ccccccccccccccccccncanans
163, #-------- e e me e e e e e mmeeeemmeememeemm e -e-
164.
165. #Save an image of each plot along with its given input parameters as files in a
166. # sub-directory 'Physics_py' with date and time stamp in the file name for ease
167. # of future reference.
168. #Use Python f-string formatting to write the input parameter values in suitable
169. # formats for LaTeX inclusion.
170. if not path.exists('Physics_py'):
171. mkdir('Physics_py')
172. dt_str=time.strftime("%Y%m%d-%H%M%S" )
173. savefig(f'Physics_py/{dt_str}_test_pyplot#l.png')
174.
175. with open(f'Physics_py/{dt_str}_test_pyplot#l.txt','w') as text_file:
176. text_file.write(f'\
177.\
178. Mass & \
179. {m_sun:{".5e" if m_sun!=int(m_sun) else ">2.0f"}} & \
180. {m_earth:{".5e" if m_earth!=int(m_earth) else ">2.0f"}} & \
181. {m_moon:{".5e" if m_moon!=int(m_moon) else ">2.0f"}} \\\\ \n\
182. \
183. Radius & (\
184. {r1[@]:{">8.5f" if ri1[@]!=int(ri[@]) else ">2.0f"}},\
185. {r1[1]:{">8.5f" if ri[1]!=int(ri[1]) else ">2.0f"}},\
186. {r1[2]:{">8.5f" if ri1[2]!=int(r1[2]) else ">2.0f"}} )
187. \
188. {r2[0]:{">8.5f" if r2[@]!=int(r2[0]) else ">2.0f"}},\
189. {r2[1]:{">8.5f" if r2[1]!=int(r2[1]) else ">2.0f"}},\



190. {r2[2]:{">8.5f" if r2[2]!=int(r2[2]) else ">2.0f"}} ) & (\
191. \

192. {r3[0]:{">8.5f" if r3[0]!=int(r3[0]) else ">2.0f"}},\

193. {r3[1]:{">8.5f" if r3[1]!=int(r3[1]) else ">2.0f"}},\

194. {r3[2]:{">8.5f" if r3[2]!=int(r3[2]) else ">2.8f"}} ) \\\\ \n\
195. \

196. Velocity & (\

197. {vi[@]:{">8.5f" if vi[@]!=int(v1[0@]) else ">2.0f"}},\

198. {vi[1]:{">8.5Ff" if vi[1]!=int(v1l[1]) else ">2.0f"}},\

199. {vi[2]:{">8.5f" if vi[2]!=int(v1[2]) else ">2.0f"}} ) & (\
200. \

201. {v2[@]:{">8.5f" if v2[@]!=int(v2[0]) else ">2.0f"}},\

202. {v2[1]:{">8.5f" if v2[1]!=int(v2[1]) else ">2.0f"}},\

203. {v2[2]:{">8.5f" if v2[2]!=int(v2[2]) else ">2.0f"}} ) & (\
204. \

205. {v3[0]:{">8.5f" if v3[0]!=int(v3[0]) else ">2.0f"}},\

206. {v3[1]:{">8.5F" if v3[1]!=int(v3[1]) else ">2.0f"}},\

207. {v3[2]:{">8.5f" if v3[2]!=int(v3[2]) else ">2.0f"}} ) \\\\ \n\
208. \

209. Time & \

210. {t_start:{">8.5f" if t_start!=int(t_start) else ">2.0f"}} & \

211. {t_end:{">8.5f" if t_end!=int(t_end) else ">2.0f"}} & \

212. {t_points:{">8.5f" if t_points!=int(t_points) else ">2.0f"}} \\\\ \
213.\

214. ")

215.

216. show()



8.6 Code Snippet: Calculating Radius of S-type Orbits

#Determine the diameter of the planet's orbit about the x and y planes by doing the following:

# ( diameter of entire donut-shape produced by planet's orbits ) minus ( diameter of Alpha Centauri A's orbit )
diameter_x = ( max(r3_com_sol[:,0]) - min(r3_com_sol[:,0]) ) - ( max(rl_com_sol[:,0]) - min(rl_com_sol[:,0]) )
diameter_y = ( max(r3_com_sol[:,1]) - min(r3_com_sol[:,1]) ) - ( max(rl_com_sol[:,1]) - min(rl_com_sol[:,1]) )

#Calculate the average radius of the planet's orbit about Alpha Centauri A (star 1)
mean_radius = (diameter_x + diameter_y) / 4

. #Print the average radius so that it can be later evaluated
0. print(mean_radius)

P OUoONOOUVTE, WN R
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